SecretRoom: An Anonymous Chat Client

By: Cristian Gutu and Fengyao Ding Computer Science Mentor: Albert Kwon

Motivation

- Communicate anonymously
 - Wikileaks
 - Edward Snowden
- Encryption is easy
- Metadata is hard to hide

Hiding Metadata

- Hide who you talk to
 - Talking to Wikileaks may be enough to prosecute you
- Hide when you talk

Related Work: Tor

- Hides who is being talked to
- Does not hide when one talks
 Specially with fewer people
- Anonymity is not guaranteed in presence of strong adversaries like ISPs and government.

Dining Cryptographer Networks (DC-Nets)

DC-Nets

- A truly anonymous communication protocol.
 o Hides who talked and when they talked.
- Based on boolean-XOR computations

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	0

DC-Nets

DC-Nets: Problems

- O(n²) communication
- Collision when multiple people talk
 - Need a "schedule"

SecretRoom Design

SecretRoom Design

- Dynamic desktop application that relies on DC-Nets for a truly anonymous workflow.
- All client actions are obfuscated.
 - Network activity is strictly indistinguishable.

SecretRoom Model

• client-client \rightarrow client-

server

- server can be malicious
- k malicious clients
- n-k honest clients

Chat Room Functionality

- Chat room is pre-established per topic of interest
- Minimum of 3 clients per chat room
 - DC-Nets protocol requires at least 3 clients for anonymity

SecretRoom Protocol

- Build pairwise secrets
- Build chat schedule
- Communicate anonymously via DC-Nets

Building Pairwise Secrets

- Diffie Hellman Protocol
 - Allows 2 or more people to arrive at a common secret number, without revealing the secret

Diffie-Hellman

• Alice and Bob want to share a secret

Diffie Hellman

- Given p, g, and a secret number a: compute g^a mod p
 - If g^a mod p = z and we know z, g, p a is hard to find (especially with large numbers)

Improving Secret Sharing

- Using naive DH exchange, a client need to talk to all other clients
 O(n²) communication for n clients
- Upload/download public values to/from the server
 - Only need to communicate with the server
 - O(n) communication
 - Server does not learn secret values

Scheduling (1/2)

Scheduling (2/2)

- Send message when not user's turn:
 - All messages added to waiting queue, sent when turn comes
- What if user is stalling?
 - (Small) time limit passed \rightarrow next user given priority. (High turn circulation speed \rightarrow process seems fluid)

DC-Net Communication

Implementation

Implementation

- Language: Python
- Networking Framework: xmlrpc python
- Anonymity primitive: DC-Nets
- Shared Key Algorithm: Diffie Hellman

• Libraries:

- Socket Server
- Queue
- SimpleXMLRPCServer and xmlrpclib
- o sys
- randint

Current Status

- Functional chat room with a fixed amount of clients
 - DC-Nets implemented
 - Diffie Hellman implemented
- Guaranteed anonymity with a trusted server
 - Server knows the schedule

Future Work

- Secure schedule creation
 - \circ $\,$ No single party learns the schedule
- Detect disruption
 - Detect senseless XOR
- Dynamic chat room
- "Fake" clients
 - \circ $\,$ Increase the anonymity set size
- Scalability study

Conclusion

- SecretRoom provides strong anonymity
 - Attacker cannot distinguish between someone who is chatting & someone who is not.
 - Network activity is strictly indistinguishable.
- Baseline implementation done

Thank you!

Any questions?

Reducing Diffie Hellman Secret Sharing

- Use Pseudo-Random Number Generator
- Using same generation "seed" clients can make new shared secret keys with a PRNG.
 - Faster
 - Less network communication

Diffie-Hellman

- Choose prime p = 23 and generator g = 5
- Alice chooses a secret a = 6, then sends

 $A = 5^{6} \mod 23 = 8$ to Bob

• Bob chooses a secret **b** = **15**, then sends

 $B = 5^{15} \mod 23 = 19$ to Alice

- Alice computes $s = 19^6 \mod 23 = 2$
- Bob computes $s = 8^{15} \mod 23 = 2$
- Alice and Bob now share a secret (the number 2).

